Calculation of Zonal Polynomial Coefficients by Use of the Laplace-Beltrami Operator
نویسندگان
چکیده
منابع مشابه
Matching shapes by eigendecomposition of the Laplace-Beltrami operator
We present a method for detecting correspondences between non-rigid shapes, that utilizes surface descriptors based on the eigenfunctions of the Laplace-Beltrami operator. We use clusters of probable matched descriptors to resolve the sign ambiguity in matching the eigenfunctions. We then define a matching cost that measures both the descriptor similarity, and the similarity between correspondi...
متن کاملData driven estimation of Laplace-Beltrami operator
Approximations of Laplace-Beltrami operators on manifolds through graph Laplacians have become popular tools in data analysis and machine learning. These discretized operators usually depend on bandwidth parameters whose tuning remains a theoretical and practical problem. In this paper, we address this problem for the unnormalized graph Laplacian by establishing an oracle inequality that opens ...
متن کاملThe Laplace-Beltrami-Operator on Riemannian Manifolds
This report mainly illustrates a way to compute the Laplace-Beltrami-Operator on a Riemannian Manifold and gives information to why and where it is used in the Analysis of 3D Shapes. After a brief introduction, an overview over the necessary properties of manifolds for calculating the Laplacian is given. Furthermore the two operators needed for defining the Laplace-Beltrami-Operator the gradien...
متن کاملEstimating the Laplace-Beltrami Operator by Restricting 3D Functions
We present a novel approach for computing and solving the Poisson equation over the surface of a mesh. As in previous approaches, we define the Laplace-Beltrami operator by considering the derivatives of functions defined on the mesh. However, in this work, we explore a choice of functions that is decoupled from the tessellation. Specifically, we use basis functions (second-order tensor-product...
متن کاملLaplace-Beltrami operator for Jack polynomials
We introduce a Laplace-Beltrami type operator on the Fock space of symmetric functions and show that the Jack symmetric functions are the only family of eigenvectors of the differential operator, thus giving a new characterization of Jack polynomials. This was achieved by explicit computation of its action on generalized homogeneous symmetric functions. Using this new method we give a combinato...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: The Annals of Mathematical Statistics
سال: 1968
ISSN: 0003-4851
DOI: 10.1214/aoms/1177698153